

 Navigation

 	
 index

 	
 next |

 	Beginners Python Workshop 1.0 documentation

Welcome to the Beginners Python Workshop

Schedule

Friday, 6pm - 9pm: set up your development environment, learn how to execute Python code from a file and interactively from a Python prompt, and learn about printing and using Python as a calculator.

Saturday, 9:30am - 10am: settle in, get your laptop set up, and review Friday’s material. We will start the lecture promptly at 10.

Saturday, 10am - noon: Intro to Python lecture

Saturday, noon - 1pm: we’ll provide lunch. Let us know when you RSVP if you have any dietary restrictions.

Saturday, 1pm - 3:30pm: break out into groups to practice Python through short projects on a variety of fun and practical topics.

Saturday, 3:30pm - 4pm: wrap-up, next steps, and upcoming opportunities for learning and practicing Python.

Workshop Outline

	Day One
	Goal #1: set up Python

	Goal #2: prepare a text editor

	Goal #3: practice starting and exiting Python

	Goal #4: practice navigating the computer from a command prompt

	Goal #5: practice running Python code from a file

	Goal #6: get dependencies installed for the Saturday projects

	Goal #7: start learning Python!

	Goal #8: practice Python using CodingBat

	Goal #9: Checkoff

	Congratulations!

Social

Here is our twitter account and hashtag for the workshop.

	@pythonkc

	#pykcworkshop

 Copyright 2012, Python KC.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Beginners Python Workshop 1.0 documentation

Day One

Goal #1: set up Python

This section has instructions for installing Python and running Python from a command prompt.

	Windows
	Download and install Python

	Put Python on the PATH

	Success!

	Mac OS X
	Test your Python Install

	Success!

	Linux
	Test your Python Install

	Success!

Goal #2: prepare a text editor

In addition to being able to run Python, we are going to install a good text editor for writing and saving Python code during the workshop.
If you would like to use a different text editor from the recommendation for your operating system, please let a staff member know.

	Windows
	Our recommendation

	Configure Notepad++ to indent with spaces

	Success!

	Mac OS X
	Our recommendation

	If you run into trouble with Smultron

	Configure Smultron to indent with spaces

	Success!

	Linux
	How to find gedit in the Applications list

	How to find GEdit from a terminal

	Configure gedit to indent with spaces

	Success!

Goal #3: practice starting and exiting Python

We’ll do a lot of learning and practicing at a Python prompt (this is “interactive” because you are typing the code and hitting enter to run it yourself, instead of running it from a file). So let’s practice starting and exiting Python.

	Windows
	Start Python

	Success!

	Mac OS X
	Start Python

	Success!

	Linux
	Start Python

	Success!

Goal #4: practice navigating the computer from a command prompt

We will be running files containing Python code (Python “scripts”) from the command prompt. You’ll need to be able to navigate to those scripts using the command prompt so you can run them. In this section, we’ll practice using these navigation commands.

	Windows
	Terminal Navigation

	Open a command prompt:

	Practice using dir and cd

	Tips

	Check your understanding

	Success!

	Mac OS X
	Terminal Navigation

	Open a command prompt

	Practice using ls, pwd, and cd

	Tips

	Check your understanding

	Success!

	Linux
	Terminal Navigation

	Open a command prompt

	Practice using ls, pwd, and cd

	Tips

	Check your understanding

	Success!

Goal #5: practice running Python code from a file

Interactive Python programming at a Python prompt is great for short pieces of code and for testing ideas. For longer code, it can be easier to save the code in a file, and execute the contents of that file (aka a Python script). In this section, we’ll practice running Python scripts.

	Windows
	Start your text editor

	Write and save a short Python script

	Run the script

	Success!

	Mac OS X
	Start your text editor

	Write and save a short Python script

	Run the script

	Success!

	Linux
	Start your text editor

	Write and save a short Python script

	Run the script

	Success!

Goal #6: get dependencies installed for the Saturday projects

	Windows
	Color Wall

	Wordplay

	Twitter

	State Capitals

	Success!

	Mac OS X
	ColorWall

	Wordplay

	Twitter

	State Capitals

	Success!

	Linux
	ColorWall

	Wordplay

	Twitter

	State Capitals

	Success!

Goal #7: start learning Python!

It’s time to start learning, reading, and writing some Python! Tonight, you’ll work through a self-directed tutorial. Saturday morning, we’ll have an interactive lecture to cover more Python basics.

Tutorial

Goal #8: practice Python using CodingBat

Learning about functions opened up a whole new way for us to practice, using the programming site codingbat.com. The big goal of this practice section is to get you thinking about how to solve problems in Python.

Using Codingbat.com

You don’t have to create a CodingBat account to do the exercises, but if you do create an account it’ll keep track of which problems you’ve completed and other statistics.

Goal #9: Checkoff

Tell a staff member that you are ready to be checked off. Together you will go through the following check-off steps:

	Start a command prompt, and from that command prompt start Python. Then quit Python.

	Create a new Python file (with a .py extension). In that file, type:

print "Hello World"

and save the file. From a command prompt, navigate to and execute that Python script.

	Open your text editor, and press “Tab”. Use the left arrow key to show the instructor that you are using spaces to indent, not tabs.

	To test the ColorWall installation: navigate to the ColorWall directory and run run.py:

python run.py -a

	To test the Wordplay installation: navigate to the Wordplay directory and run words1.py:

python words1.py

	To test the Twitter installlation, navigate to the Twitter directory and run twitter_api.py:

python twitter_api.py --search=python

	Walk through the CodingBat problem that you had the most difficulty with.

If you have any other questions about the tutorial, project setup, or CodingBat questions, now is a great time to ask!

Congratulations!

You are done with the Friday portion of this Workshop. We’ll see you at 10am tomorrow! Please bring the laptop you used tonight.

If you have any questions, comments, or feedback on tonight’s material, don’t hesitate to let a staff member know.

 Copyright 2012, Python KC.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Beginners Python Workshop 1.0 documentation

 	Day One

Windows

Instructions for setting up Python on Windows.

Download and install Python

If you believe you already have Python installed, please let a staff member know before completing these steps.

Download and Install

Click http://python.org/ftp/python/2.7.1/python-2.7.1.msi and choose “run” if you have the option to. Otherwise, save it to your Desktop, then minimize windows to see your desktop, and double click on it to start the installer. Follow the installer instructions to completion.

Open a command prompt

We will be doing this multiple times, so please make a note of how to do this!

	On Windows Vista or Windows 7: click on the Start menu (the Windows logo in the lower left of the screen), type cmd into the Search field directly above the Start menu button, and click on “cmd” in the search results above the Search field.

	On Windows XP: click on the Start menu (the Windows logo in the lower left of the screen), click on “Run...”, type cmd into the text box, and hit enter.

	note:	You now have what’s called a command prompt. This command prompt is another way of navigating your computer and running programs – just textually instead of graphically. We are going to be running Python and Python scripts from this command prompt.

Test Python Install

At this C:prompt that appears, test your Python install by typing:

\Python27\python.exe

and hitting enter. You should see something like:

Python 2.7.1 (r271:86832, ...) on win32
Type "help", "copyright", "credits" or "license" for more information.
>>>

	note:	You just started Python! The >>> indicates that you are at a new type of prompt – a Python prompt. The command prompt let’s you navigate your computer and run programs, and the Python prompt lets you write and run Python code interactively.

To exit the Python prompt, type:

exit()

and press Enter. This will take you back to the Windows command prompt (the C:you saw earlier).

Put Python on the PATH

You might have noticed that you typed a “full path” to the Python application above when launching Python (python.exe is the application, but we typed Python27python.exe). In this step, you will configure your computer so that you can run Python without typing the Python27 directory name.

System Properties

	Open up “My Computer” by clicking on the Start menu or the Windows logo in the lower-left hand corner, and navigate to “My Computer” (for Windows XP) or “Computer” (For Vista and Windows 7).

	Right-click on the empty space in the window, and choose Properties.

Using XP

A window labeled “System Properties” will pop up.

	Click the “Advanced” tab.

Not Using XP

A window labeled “View basic information about your computer” will appear.

	In this window, click “Advanced system settings”

A window with the title “System Properties” will appear.

Edit the Path

	Within System Properties, make sure you are in the tab labeled “Advanced”.

	Click the button labeled “Environment Variables”.

	A window labeled “Environment Variables” will appear.

	In this window, the screen is split between “User variables” and “System variables”. Within “System variables”, scroll down and find the one labeled Path. Click the “Edit...” button.

	A window with the “Variable name” and the “Variable value” should appear. The “Variable value” will already have some text in it; click in the box to unhighlight it (we don’t want to accidentally delete that text).

	In the “Variable value” box, scroll to the end. Add the following text, and hit OK. Make sure to include the semicolon at the start:

;c:\python27\;c:\python27\scripts

	Hit “OK” to close out the system properties window.

	Test your change:

	Open up a new command prompt: you do this the same way you did above when installing python. This needs to be a new command prompt because the changes you just made didn’t take affect in prompts that were already open.

	Type python into the command prompt to start Python

	Notice that you now get a Python interpreter, indicated by the change to a >>> prompt.

	Exit the Python prompt by typing:

exit()

Now you’re back at the Windows command prompt (C:).

Success!

You have Python installed and configured.

 Copyright 2012, Python KC.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Beginners Python Workshop 1.0 documentation

 	Day One

Mac OS X

Instructions for testing Python on Mac OS X

Test your Python Install

OS X ships with Python installed, so the goal of this page is to make sure you can start a Terminal and run Python from the command line.

	Start up a Terminal. You can find the Terminal application through Spotlight, or navigate to Applications/Utilities/Terminal.

	This Terminal contains something called a command prompt. This command prompt is another way of navigating your computer and running programs – just textually instead of graphically. We are going to be running Python and Python scripts from this command prompt.

	Test your Python install at the command prompt. Type:

python
Python 2.7.1 (r261:67515, Feb 11 2010, 00:51:29)
[GCC 4.2.1 (Apple Inc. build 5646)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>>

	note:	You just started Python! The >>> indicates that you are at a new type of prompt – a Python prompt. The command prompt let’s you navigate your computer and run programs, and the Python prompt lets you write and run Python code interactively.

	note:	If the Python version number (2.7.1 in the example above) is not a number between 2.4 and 2.7 (ignoring the number after the second dot), tell a staff member.

	To exit the Python prompt, type:

exit()

This will take you back to the OS X command prompt.

Success!

You have tested your Python installation.

 Copyright 2012, Python KC.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Beginners Python Workshop 1.0 documentation

 	Day One

Linux

Instructions for testing Python on Linux

Test your Python Install

Linux ships with Python installed, so the goal of this page is to make sure you can start a terminal and run Python from the command line.

	Start up a Terminal. You can find the Terminal application at Applications/Accessories/Terminal, or it may already be on your menu bar.

	note:	This Terminal contains something called a command prompt. This command prompt is another way of navigating your computer and running programs – just textually instead of graphically. We are going to be running Python and Python scripts from this command prompt.

	Test your Python install at the command prompt. Type:

python
Python 2.7.1 (r252:60911, Jan 24 2011, 17:44:40)
[GCC 4.3.2] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>>

	note:	You just started Python! The >>> indicates that you are at a new type of prompt – a Python prompt. The command prompt let’s you navigate your computer and run programs, and the Python prompt lets you write and run Python code interactively.

	note:	If the Python version number (2.7.1 in the example above) is not a number between 2.4 and 2.7 (ignoring the number after the second dot), tell a staff member.

	To exit the Python prompt, type:

exit()

This will take you back to the Linux command prompt.

You might need to install a package called python-tk.

Success!

You have tested your Python installation.

 Copyright 2012, Python KC.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Beginners Python Workshop 1.0 documentation

 	Day One

Windows

Our recommendation

On Windows, we suggest the Notepad++ text editor. It is actually unrelated to the Windows default program called Notepad.

To install it:

	Click and download http://download.tuxfamily.org/notepadplus/5.9/npp.5.9.Installer.exe

	Run the installer, and follow the process to the end.

To run it:

	In Windows Vista or Windows 7, click on the Start menu, type Notepad++ in the Search Field, and hit enter.

	In Windows XP, click on the Start menu, navigate to All Programs, and then navigate to Notepad++.

Configure Notepad++ to indent with spaces

	Click Settings -> Preferences

	Find the tab labeled “Language Menu/Tab Settings”

	Find the box labeled “Replace by space”, and make sure it is checked

	Click Close.

That’s it! Now, you can hit tab to indent your code, and that indentation will actually be made of spaces. This change will help you use spaces consistently, so that Python doesn’t get confused about whitespace.

Success!

Now you have an editor that you can use to open any text file, including Python programs.

If you have different editor for text, check with an instructor before moving on to make sure it will work for the weekend.

 Copyright 2012, Python KC.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Beginners Python Workshop 1.0 documentation

 	Day One

Mac OS X

Our recommendation

On Mac OS, we suggest the Smultron text editor. You’ll have to first download it, then install it.

To download Smultron:

	Click this link and download the ZIP file [http://voxel.dl.sourceforge.net/project/smultron/smultron/3.5.1/Smultron-3.5.1.zip]

	The ZIP file will expand into an application called Smultron.

	Open Finder from the bar at the bottom.

To install Smultron:

	Start Finder

	On the left side of the Finder, under “Places”, click on “Applications”.

	Drag the Smultron icon to any blank space in that window.

To run Smultron:

	Start Finder

	On the left side of the Finder, under “Places”, click on “Applications”.

	In the middle column, scroll down to to find Smultron.

	Double-click Smultron to launch the editor.

If you run into trouble with Smultron

If you can’t run the version of Smultron we recommend, try the older version 3.1.2 of Smultron [http://voxel.dl.sourceforge.net/project/smultron/smultron/3.1.2/Smultron-3.1.2.zip]. We’ve tested that it runs properly on Mac OS 10.4 on PowerPC and Intel.

Configure Smultron to indent with spaces

	Start up Smultron, and click Smultron -> Preferences. This will pop up a preferences window.

	Click on the Advanced tab, and then on the Really Advanced tab within that tab.

	Check the “Indent with spaces, not tabs” checkbox

	Close the Preferences window.

That’s it! Now, you can hit tab to indent your code, and that indentation will actually be made of spaces. This change will help you use spaces consistently, so that Python doesn’t get confused about whitespace.

Success!

Now you have an editor that you can use to open any text file, including Python programs.

If you prefer a different editor for text, check with an instructor before moving on to make sure it will work for the weekend.

 Copyright 2012, Python KC.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Beginners Python Workshop 1.0 documentation

 	Day One

Linux

How to find gedit in the Applications list

On Linux, we suggest the GEdit text editor.

GEdit should already be installed on your computer. To start GEdit: click Applications, point to Accessories, and click Text Editor. If you don’t have this option, let a staff member know.

How to find GEdit from a terminal

If you prefer to start applications from a terminal, you can type the following into a terminal to launch GEdit:

gedit &

Configure gedit to indent with spaces

	Click Edit -> Preferences

	Select the tab labeled “Editor”

	In the “Tab width” field, set it to 4 (the default is 8)

	Check the box labeled “Insert spaces instead of tabs”

	Check the box labeled “Enable automatic indentation”

	Click Close.

That’s it! Now, you can hit tab to indent your code, and that indentation will actually be made of spaces. This change will help you use spaces consistently, so that Python doesn’t get confused about whitespace.

Success!

If you prefer a different editor for text, check with an instructor before moving on to make sure it will work for the weekend.

 Copyright 2012, Python KC.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Beginners Python Workshop 1.0 documentation

 	Day One

Windows

Start Python

	
	Open a command prompt:

	
	On Windows Vista or Windows 7: click on the Start menu (the Windows logo in the lower left of the screen), type cmd into the Search field directly above the Start menu button, and click on “cmd” in the search results above the Search field.

	On Windows XP: click on the Start menu (the Windows logo in the lower left of the screen), click on “Run...”, type cmd into the text box, and hit enter.

	To start Python, type:

python
Python 2.7.1 (r271:86832, ...) on win32
Type "help", "copyright", "credits" or "license" for more information.
>>>

	note:	The >>> indicates that you are at a Python prompt.

	Exit the Python prompt by typing:

exit()

Now you’re back at the Windows command prompt (C:).

Success!

Practice these steps until you feel comfortable navigating to a command prompt, starting Python, and exiting Python.

 Copyright 2012, Python KC.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Beginners Python Workshop 1.0 documentation

 	Day One

Mac OS X

Start Python

	Start up a Terminal command prompt. You can find the Terminal application through Spotlight, or navigate to Applications/Utilities/Terminal.

	To start Python, type:

python
Python 2.7.1 (r261:67515, Feb 11 2010, 00:51:29)
[GCC 4.2.1 (Apple Inc. build 5646)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>>

	note:	The >>> indicates that you are at a Python prompt.

	Exit the Python prompt by typing:

exit()

Now you’re back at the OS X command prompt (which looks something like username$).

Success!

Practice these steps until you feel comfortable navigating to a command prompt, starting Python, and exiting Python.

 Copyright 2012, Python KC.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Beginners Python Workshop 1.0 documentation

 	Day One

Linux

Start Python

Linux ships with Python installed, so the goal of this page is to make sure you can start a terminal and run Python from the command line.

	Open a Terminal command prompt. You can find the Terminal application at Applications/Accessories/Terminal, or it may already be on your menu bar.

	To start Python, type:

python
Python 2.7.1 (r252:60911, Jan 24 2011, 17:44:40)
[GCC 4.3.2] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>>

	note:	The >>> indicates that you are at a Python prompt.

	Exit the Python prompt by typing:

exit()

Now you’re back at the Linux command prompt (which looks something like username$).

Success!

Practice these steps until you feel comfortable navigating to a command prompt, starting Python, and exiting Python.

 Copyright 2012, Python KC.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Beginners Python Workshop 1.0 documentation

 	Day One

Windows

Terminal Navigation

The filesystem on your computer is like a tree made up of folders (also called “directories”) and files. The filesystem has a root directory called /, and everything on your computer lives in subdirectories of this root directory.

We often navigate the filesystem graphically by clicking on graphical folders. We can do the exact same navigation from the command line.

There are two commands that we’ll be using at a command prompt to navigate the filesystem on your computer:

	dir

	cd

dir lists the contents of a directory.

cd moves you into a new directory (it stands for “change directory”).

Let’s practice using these commands.

Open a command prompt:

	On Windows Vista or Windows 7: click on the Start menu (the Windows logo in the lower left of the screen), type cmd into the Search field directly above the Start menu button, and click on “cmd” in the search results above the Search field.

	On Windows XP: click on the Start menu (the Windows logo in the lower left of the screen), click on “Run...”, type cmd into the text box, and hit enter.

Practice using dir and cd

Type each of these commands and hit enter:

dir

This lists all the files in your home directory:

cd C:\

This will change you into the C:\ directory:

dir

This lists the contents of the C:\ directory:

cd Users

This will change you into the Users subdirectory of the C:\ directory:

dir

You should see the names of all the files and directories in C:\Users:

cd ..

.. means “parent directory”, so this command moved you up to the parent directory. You were in C:\Users, so now you are in C:\, the root directory:

dir

This lists the contents of the root directory, confirming where you are.

Tips

	You can use Tab to auto-complete directory and file names. So from inside the root directory, if you type cd Use and hit Tab, the command prompt will auto-complete the directory name, and you can then hit enter to change into the C:\Users directory.

	The command prompt maintains a command history. You can use the up arrow to cycle through old commands.

	Note that the text that makes up the command prompt changes as you move around directories. The command prompt will always give the full directory path to your current directory.

Check your understanding

Answer these questions. Experiment at the command line if you need to! If you aren’t sure about an answer, ask a helper.

	What directory are you in after starting a new command line prompt?

	After starting a new command line prompt, how would you get to the root directory?

	How do you check what files and directories are in your current working directory?

	If you are in directory C:\Users, and you want to get to C:\Users\jesstess\projects, how would you do that?

	What are 2 ways to avoid typing out a full navigation command? (hint: one requires that you’ve run the command before)

	What is the difference between a command prompt and a Python prompt?

Success!

You’ve practiced using dir and cd to navigate your computer’s filesystem from the command prompt.

 Copyright 2012, Python KC.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Beginners Python Workshop 1.0 documentation

 	Day One

Mac OS X

Terminal Navigation

The filesystem on your computer is like a tree made up of folders (also called “directories”) and files. The filesystem has a root directory called /, and everything on your computer lives in subdirectories of this root directory.

We often navigate the filesystem graphically by clicking on graphical folders. We can do the exact same navigation from the command line.

There are three commands that we’ll be using at a command prompt to navigate the filesystem on your computer:

	ls

	pwd

	cd

ls lists the contents of a directory.

pwd gives the full directory path to your current directory.

cd moves you into a new directory (it stands for “change directory”).

Let’s practice using these commands.

Open a command prompt

You can find the Terminal application through Spotlight, or navigate to Applications/Utilities/Terminal.

Practice using ls, pwd, and cd

(that’s an l the letter, not the number 1)

Type each of these commands and hit enter:

ls

This lists all the files in your home directory:

pwd

This displays the full directory path to your current directory, which is your home directory:

cd /

This will change you into the / root directory:

ls

This lists the contents of the / root directory:

cd Users

This will change you into the Users subdirectory of the / root directory:

ls

You should see a list of all the files in /Users, including the directory for your username – your home directory:

pwd

This displays the full directory path to your current directory, /Users:

cd ..

.. means “parent directory”, so this command moved you up to the parent directory. You were in /Users, so now you are in /, the root directory:

ls

This lists the contents of the root directory, confirming where you are.

Tips

	You can use Tab to auto-complete directory and file names. So from inside the root directory /, if you type cd Us and hit Tab, the command prompt will auto-complete the directory name, and you can then hit enter to change into the /Users directory.

	The command prompt maintains a command history. You can use the up arrow to cycle through old commands.

Check your understanding

	Answer these questions. Experiment at the command line if you need to! If you aren’t sure about an answer, ask a helper.

	What directory are you in after starting a new command line prompt?

	After starting a new command line prompt, how would you get to the root directory?

	How do you check what files and directories are in your current working directory?

	If you are in directory /Users, and you want to get to /Users/jesstess/projects, how would you do that?

	What are 2 ways to avoid typing out a full navigation command? (hint: one requires that you’ve run the command before)

	What is the difference between a command prompt and a Python prompt?

Success!

You’ve practiced using ls, pwd, and cd to navigate your computer’s filesystem from the command prompt.

 Copyright 2012, Python KC.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Beginners Python Workshop 1.0 documentation

 	Day One

Linux

Terminal Navigation

The filesystem on your computer is like a tree made up of folders (also called “directories”) and files. The filesystem has a root directory called /, and everything on your computer lives in subdirectories of this root directory.

We often navigate the filesystem graphically by clicking on graphical folders. We can do the exact same navigation from the command line.

There are three commands that we’ll be using at a command prompt to navigate the filesystem on your computer:

	ls

	pwd

	cd

ls lists the contents of a directory.

pwd gives the full directory path to your current directory.

cd moves you into a new directory (it stands for “change directory”).

Let’s practice using these commands.

Open a command prompt

You can find the Terminal application at Applications/Accessories/Terminal, or it may already be on your menu bar.

Practice using ls, pwd, and cd

(that’s an l the letter, not the number 1)

Type each of these commands and hit enter:

ls

This lists all the files in your home directory:

pwd

This displays the full directory path to your current directory, which is your home directory:

cd /

This will change you into the / root directory:

ls

This lists the contents of the / root directory:

cd home

This will change you into the home subdirectory of the / root directory:

ls

You should see a list of all the files in /home, including the directory for your username – your home directory:

pwd

This displays the full directory path to your current directory, /home:

cd ..

.. means “parent directory”, so this command moved you up to the parent directory. You were in /home, so now you are in /, the root directory:

ls

This lists the contents of the root directory, confirming where you are.

Tips

	You can use Tab to auto-complete directory and file names. So from inside the root directory /, if you type cd ho and hit Tab, the command prompt will auto-complete the directory name, and you can then hit enter to change into the /home directory.

	The command prompt maintains a command history. You can use the up arrow to cycle through old commands.

Check your understanding

Answer these questions. Experiment at the command line if you need to! If you aren’t sure about an answer, ask a helper.

	What directory are you in after starting a new command line prompt?

	After starting a new command line prompt, how would you get to the root directory?

	How do you check what files and directories are in your current working directory?

	If you are in directory /home, and you want to get to /home/jesstess/projects, how would you do that?

	What are 2 ways to avoid typing out a full navigation command? (hint: one requires that you’ve run the command before)

	What is the difference between a command prompt and a Python prompt?

Success!

You’ve practiced using ls, pwd, and cd to navigate your computer’s filesystem from the command prompt.

 Copyright 2012, Python KC.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Beginners Python Workshop 1.0 documentation

 	Day One

Windows

Start your text editor

	Launch the Notepad++ text editor. See the Windows text editor setup instructions for the steps to do this.

	Start a new, blank text file.

Write and save a short Python script

	Add the following line to your new text file:

print "Hello World!"

	Save the script as hello.py in your Desktop directory. The .py extension indicates that this file contains Python code.

Run the script

	Start a new command prompt. See the terminal navigation on Windows instructions for the steps to do this. Recall that a terminal prompt will look like C:and a Python prompt will look like >>>. Make sure you are at a terminal prompt and not a Python prompt; if you are at a Python prompt, you can type exit() on a line by itself and then hit enter to exit Python and return to a terminal prompt.

	Navigate to your Desktop directory from a command prompt, using the dir and cd commands. See the terminal navigation on Windows instructions for a refresher on using these commands. Don’t hesitate to get help from a staff member on this step if you need it – it’s a new way of navigating your computer, so it may be unintuitive at first!

	Once you are in your Desktop directory, you’ll see hello.py in the output of dir.

	Type:

python hello.py

and hit enter. Doing this will cause Python to execute the contents of that script – it should print “Hello World!” to the screen. What you’ve done here is run the Python application with an argument – the name of a file, in this case “hello.py”. Python knows that when you give it a file name as an argument, it should execute the contents of the provided file. You get the same result as if you typed:

print "Hello World!"

at a Python prompt and hit enter.

Success!

You created and ran your first Python script!

	When you run the python command by itself, you start a Python prompt. You can execute Python code interactively at that prompt.

	When you run the python command with a file name as an argument, Python executes the Python code in that file.

 Copyright 2012, Python KC.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Beginners Python Workshop 1.0 documentation

 	Day One

Mac OS X

Start your text editor

	Launch the Smultron text editor. See the OS X text editor setup instructions for the steps to do this.

	Start a new, blank text file.

Write and save a short Python script

	Add the following line to your new text file:

print "Hello World!"

	Save the script as hello.py in your home directory. The .py extension indicates that this file contains Python code.

Run the script

	Start a command prompt. See the terminal navigation on OS X instructions for the steps to do this. Recall that a terminal prompt will look like jesstess$ and a Python prompt will look like >>>. Make sure you are at a terminal prompt and not a Python prompt; if you are at a Python prompt, you can type exit() on a line by itself and then hit enter to exit Python and return to a terminal prompt.

	Navigate to your home directory from a command prompt, using the ls, pwd, and cd commands. See the terminal navigation on OS X instructions for a refresher on using these commands. Don’t hesitate to get help from a staff member on this step if you need it – it’s a new way of navigating your computer, so it may be unintuitive at first!

	Once you are in your home directory, you’ll see hello.py in the output of ls.

	Type:

python hello.py

and hit enter. Doing this will cause Python to execute the contents of that script – it should print “Hello World!” to the screen. What you’ve done here is run the Python application with an argument – the name of a file, in this case “hello.py”. Python knows that when you give it a file name as an argument, it should execute the contents of the provided file. You get the same result as if you typed:

print "Hello World!"

at a Python prompt and hit enter.

Success!

	You created and ran your first Python script!

	When you run the python command by itself, you start a Python prompt. You can execute Python code interactively at that prompt.

	When you run the python command with a file name as an argument, Python executes the Python code in that file.

 Copyright 2012, Python KC.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Beginners Python Workshop 1.0 documentation

 	Day One

Linux

Start your text editor

	Launch the GEdit text editor. See the Linux text editor setup instructions for the steps to do this.

	Start a new, blank text file.

Write and save a short Python script

	Add the following line to your new text file:

print "Hello World!"

	Save the script as hello.py in your home directory. The .py extension indicates that this file contains Python code.

Run the script

	Start a command prompt. See the terminal navigation on Linux instructions for the steps to do this. Recall that a terminal prompt will look like jesstess$ and a Python prompt will look like >>>. Make sure you are at a terminal prompt and not a Python prompt; if you are at a Python prompt, you can type exit() on a line by itself and then hit enter to exit Python and return to a terminal prompt.

	Navigate to your home directory from a command prompt, using the ls, pwd, and cd commands. See the terminal navigation on Linux instructions for a refresher on using these commands. Don’t hesitate to get help from a staff member on this step if you need it – it’s a new way of navigating your computer, so it may be unintuitive at first!

	Once you are in your home directory, you’ll see hello.py in the output of ls.

	Type:

python hello.py

and hit enter. Doing this will cause Python to execute the contents of that script – it should print “Hello World!” to the screen. What you’ve done here is run the Python application with an argument – the name of a file, in this case “hello.py”. Python knows that when you give it a file name as an argument, it should execute the contents of the provided file. You get the same result as if you typed:

print "Hello World!"

at a Python prompt and hit enter.

Success!

You created and ran your first Python script!

	When you run the python command by itself, you start a Python prompt. You can execute Python code interactively at that prompt.

	When you run the python command with a file name as an argument, Python executes the Python code in that file.

 Copyright 2012, Python KC.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Beginners Python Workshop 1.0 documentation

 	Day One

Windows

Color Wall

[image: ../../_images/colorwall.png]

Download the ColorWall project

You’ll be writing graphical effects for an existing ColorWall project. Download this ColorWall code and example effects so you’re ready to start working with them tomorrow:

	Right click the following file, click “Save Target as...” or “Save link as...”, and save it to your Desktop directory: ColorWall.zip

	The ”.zip” extension on the above file indicates that it is a compressed Zip archive. We need to “extract” its contents. To do this, click on “Start”, then “Computer”, and navigate to your Desktop directory. Find ColorWall.zip on your Desktop and double-click on it to “unzip” it. That will create a folder called ColorWall containing several files.

Test the ColorWall code

Start a command prompt and navigate to the DesktopColorWall directory where the ColorWall code lives. For example, if the ColorWall project is at C:UsersjesstessDesktopColorWall:

cd C:\Users\jesstess\Desktop\ColorWall

will change you into that directory, and:

dir

will show you the source code files in that directory. One of the files is “run.py”, which has a ”.py” extension indicating that it is a Python script. Type:

python run.py

at the command prompt to execute the run.py Python script. You should see a window pop up and start cycling through colorful effects. If you don’t, let a staff member know.

Now type:

python run.py -a -s

at the command prompt to execute the run.py Python script so that it runs only the advanced effects. You should see a window pop up and start cycling through different colorful effects. If you don’t, let a staff member know.

You can also run both sets of effects by typing:

python run.py -a

Success!

You’ve completed setup for the ColorWall project.

Wordplay

[image: ../../_images/wordplay.png]

Download the Wordplay project

We’ve written some skeleton code for the Wordplay project already. Download this code so you’re ready to start working with it tomorrow:

	Right click the following file, click “Save Target as...” or “Save link as...”, and save it to your Desktop directory: Wordplay.zip

	Find Wordplay.zip on your Desktop and double-click on it to “unzip” it. That will create a folder called Wordplay containing several files.

Test the Wordplay code

Start a command prompt and navigate to the DesktopWordplay directory where the Wordplay code lives. For example, if the Wordplay project is at C:UsersjesstessDesktopWordplay:

cd C:\Users\jesstess\Desktop\Wordplay

will change you into that directory, and:

dir

will show you the source code files in that directory. One of the files is “words1.py”, which has a ”.py” extension indicating that it is a Python script. Type:

python words1.py

at the command prompt to execute the words1.py Python script. You should see a column of English words printed to the screen. If you don’t, let a staff member know.

Success!

You’ve completed setup for the Wordplay project.

Twitter

[image: ../../_images/twitter.png]

Download and extract the Twitter project dependencies

Click and save these four dependencies to your Desktop directory:

	httplib2-0.6.0.zip

	simplejson-2.1.6.zip

	python-twitter.zip

	python-oauth2.zip

The ”.zip” extension on the above files indicates that they are compressed Zip archives. We need to “extract” their contents. To do this, click on “Start”, then “Computer”, and navigate to your Desktop directory. For each of the 4 zip files, click on the file and click the “Extract all files” button to extract the contents. This will create a directory for each file, containing the source code for the dependency.

Install the Twitter project dependencies

Each of these 4 dependencies has an installer script that we’ll need to run at a command prompt to install the software. It is important that the dependencies are installed in the order listed above. For each project, start a command prompt and navigate to the Desktop directory where the source code lives. For example, if the httplib2-0.6.0 project was extracted to C:UsersjesstessDesktophttplib2-0.6.0:

cd C:\Users\jesstess\Desktop\httplib2-0.6.0

will change you into that directory, and:

dir

will show you the source code files in that directory. One of the files is “setup.py”, which has a ”.py” extension indicating that it is a Python script. Type:

python setup.py install

and hit enter to install httplib2.

Navigate to the 3 other dependency directories (in the order you downloaded them: simplejson-2.1.6, python-twitter, python-oauth2) and run:

python setup.py install

in all of them to install those dependencies as well.

Download the Twitter project

We’ve written some skeleton code for the Twitter project already. Download this code so you’re ready to start working with it tomorrow:

	Right click the following file, click “Save Target as...” or “Save link as...”, and save it to your Desktop directory Twitter.zip

	Find Twitter.zip on your Desktop and double-click on it to “unzip” it. That will create a folder called Twitter containing several files.

Test the Twitter code

Start a command prompt and navigate to the DesktopTwitter directory where the Twitter code lives. For example, if the Twitter project is at C:UsersjesstessDesktopTwitter:

cd C:\Users\jesstess\Desktop\Twitter

will change you into that directory, and:

dir

will show you the source code files in that directory. One of the files is “twitter_api.py”, which has a ”.py” extension indicating that it is a Python script. Type:

python twitter_api.py --search=python

at the command prompt to execute the twitter_api.py Python script. You should the text from 20 tweets containing the word “Python” printed to the screen. If you don’t, let a staff member know.

Success!

You’ve completed setup for the Twitter project

State Capitals

We’ll look at an example Python script that quizzes you on state capitals during the lecture on Saturday.

Right click the following file, click “Save Target as...” or “Save link as...”, and save it to your Desktop directory state_capitals.py

Success!

You are done installing dependencies for the Saturday projects.

 Copyright 2012, Python KC.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Beginners Python Workshop 1.0 documentation

 	Day One

Mac OS X

ColorWall

[image: ../../_images/colorwall.png]

Download the ColorWall project

You’ll be writing graphical effects for an existing ColorWall project. Download this ColorWall code and example effects so you’re ready to start working with them tomorrow:

	Right click the following file, click “Save Target as...” or “Save link as...”, and save it to your Desktop directory ColorWall.zip

	The ”.zip” extension on the above file indicates that it is a compressed Zip archive. We need to “extract” its contents. To do this, find ColorWall.zip on your Desktop and double-click on it. That will create a folder called ColorWall containing several files.

Test the ColorWall code

Start a command prompt and navigate to the Desktop/ColorWall directory where the ColorWall code lives. For example, if the ColorWall project is at /Users/jesstess/Desktop/ColorWall:

cd ~/Desktop/ColorWall

will change you into that directory (the “~” means your home directory!), and:

ls

will show you the source code files in that directory. One of the files is “run.py”, which has a ”.py” extension indicating that it is a Python script. Type:

python run.py

at the command prompt to execute the run.py Python script. You should see a window pop up and start cycling through colorful effects. If you don’t, let a staff member know.

Now type:

python run.py -a -s

at the command prompt to execute the run.py Python script so that it runs only the advanced effects. You should see a window pop up and start cycling through different colorful effects. If you don’t, let a staff member know.

You can also run both sets of effects by typing:

python run.py -a

Success!

You’ve completed setup for the ColorWall project.

Wordplay

[image: ../../_images/wordplay.png]

Download the Wordplay project

We’ve written some skeleton code for the Wordplay project already. Download this code so you’re ready to start working with it tomorrow:

	Right click the following file, click “Save Target as...” or “Save link as...”, and save it to your Desktop directory: Wordplay.zip

	Find Wordplay.zip on your Desktop and double-click on it to “unzip” it. That will create a folder called Wordplay containing several files.

Test the Wordplay code

Start a command prompt and navigate to the Desktop/Wordplay directory where the Wordplay code lives. For example, if the Wordplay project is at /Users/jesstess/Desktop/Wordplay:

cd ~/Desktop/Wordplay

will change you into that directory (the “~” means your home directory!), and:

ls

will show you the source code files in that directory. One of the files is “words1.py”, which has a ”.py” extension indicating that it is a Python script. Type:

python words1.py

at the command prompt to execute the words1.py Python script. You should see a column of English words printed to the screen. If you don’t, let a staff member know.

Success!

You’ve completed setup for the Wordplay project.

Twitter

[image: ../../_images/twitter.png]

Download and extract the Twitter project dependencies

Click and save these four dependencies to your Desktop:

	httplib2-0.6.0.zip

	simplejson-2.1.6.zip

	python-twitter.zip

	python-oauth2.zip

The ”.zip” extension on the above files indicates that they are compressed Zip archives. We need to “extract” their contents. To do this, double-click on each file. This will create a directory for each file, containing the source code for the dependency.

Install the Twitter project dependencies

Each of these 4 dependencies has an installer script that we’ll need to run at a command prompt to install the software. It is important that the dependencies are installed in the order listed above. For each project, start a command prompt and navigate to the Desktop directory where the source code lives. For example, if the httplib2-0.6.0 project was extracted to /Users/jesstess/Desktop/httplib2-0.6.0:

cd ~/Desktop/httplib2-0.6.0

will change you into that directory (the “~” means your home directory!), and:

ls

will show you the source code files in that directory. One of the files is “setup.py”, which has a ”.py” extension indicating that it is a Python script. Type:

sudo python setup.py install

and hit enter to install httplib2. You will need to enter your Mac account password.
Navigate to the 3 other dependency directories and run:

sudo python setup.py install

in all of them to install those dependencies as well.

Download the Twitter project

We’ve written some skeleton code for the Twitter project already. Download this code so you’re ready to start working with it tomorrow:

	Right click the following file, click “Save Target as...” or “Save link as...”, and save it to your Desktop directory: Twitter.zip

	Find Twitter.zip on your Desktop and double-click on it to “unzip” it. That will create a folder called Twitter containing several files.

Test the Twitter code

Start a command prompt and navigate to the Desktop/Twitter directory where the Twitter code lives. For example, if the Twitter project is at /Users/jesstess/Desktop/Twitter:

cd ~/Desktop/Twitter

will change you into that directory (the “~” means your home directory!), and:

ls

will show you the source code files in that directory. One of the files is “twitter_api.py”, which has a ”.py” extension indicating that it is a Python script. Type:

python twitter_api.py --search=python

at the command prompt to execute the twitter_api.py Python script. You should the text from 20 tweets containing the word “Python” printed to the screen. If you don’t, let a staff member know.

Success!

You’ve completed setup for the Twitter project.

State Capitals

We’ll look at an example Python script that quizzes you on state capitals during the lecture on Saturday.

Right click the following file, click “Save Target as...” or “Save link as...”, and save it to your Desktop directory: state_capitals.py

Success!

You are done installing dependencies for the Saturday projects.

 Copyright 2012, Python KC.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 previous |

 	Beginners Python Workshop 1.0 documentation

 	Day One

Linux

ColorWall

[image: ../../_images/colorwall.png]

Install ColorWall dependencies

If you are running Ubuntu or Debian, at a Terminal prompt run:

sudo apt-get install python-tk

You will be prompted for your administrative password.

This will install the python-tk package, which is used by the ColorWall project.

Download the ColorWall project

You’ll be writing graphical effects for an existing ColorWall project. Download this ColorWall code and example effects so you’re ready to start working with them tomorrow:

Right click the following file, click “Save Target as...” or “Save link as...”, and save it to your Desktop directory: ColorWall.tar.gz

Find ColorWall.tar.gz on your Desktop and double-click on it. A window will pop up with some options about how to “extract” the file. Leave the defaults where they are and click the “extract” button. That will create a folder on the Desktop called ColorWall containing several files.

Test the ColorWall code

Start a command prompt and navigate to the Desktop/ColorWall directory where the ColorWall code lives. For example, if the ColorWall project is at /home/jesstess/Desktop/ColorWall:

cd /home/jesstess/Desktop/ColorWall

will change you into that directory, and:

ls

will show you the source code files in that directory. One of the files is “run.py”, which has a ”.py” extension indicating that it is a Python script. Type:

python run.py

at the command prompt to execute the run.py Python script. You should see a window pop up and start cycling through colorful effects. If you don’t, let a staff member know.

Now type:

python run.py -a -s

at the command prompt to execute the run.py Python script so that it runs only the advanced effects. You should see a window pop up and start cycling through different colorful effects. If you don’t, let a staff member know.

You can also run both sets of effects by typing:

python run.py -a

Success!

You’ve completed setup for the ColorWall project.

Wordplay

[image: ../../_images/wordplay.png]

Download the Wordplay project

We’ve written some skeleton code for the Wordplay project already. Download this code so you’re ready to start working with it tomorrow:

Right click the following file, click “Save Target as...” or “Save link as...”, and save it to your Desktop directory: Wordplay.tar.gz

Find Wordplay.tar.gz on your Desktop and double-click on it to “extract” it. That will create a folder called Wordplay containing several files.

Test the Wordplay code

Start a command prompt and navigate to the Desktop/Wordplay directory where the Wordplay code lives. For example, if the Wordplay project is at /home/jesstess/Desktop/Wordplay:

cd /home/jesstess/Desktop/Wordplay

will change you into that directory, and:

ls

will show you the source code files in that directory. One of the files is “words1.py”, which has a ”.py” extension indicating that it is a Python script. Type:

python words1.py

at the command prompt to execute the words1.py Python script. You should see a column of English words printed to the screen. If you don’t, let a staff member know.

Success!

You’ve completed setup for the Wordplay project.

Twitter

[image: ../../_images/twitter.png]

Download and extract the Twitter project dependencies

Click and save these four dependencies to your Desktop:

	httplib2-0.6.0.zip

	simplejson-2.1.6.zip

	python-twitter.zip

	python-oauth2.zip

The ”.zip” extension on the above files indicates that they are compressed Zip archives. We need to “extract” their contents. To do this, double-click on each file. This will create a directory for each file, containing the source code for the dependency.

Install the Twitter project dependencies

Each of these 4 dependencies has an installer script that we’ll need to run at a command prompt to install the software. It is important that the dependencies are installed in the order listed above. For each project, start a command prompt and navigate to the Desktop directory where the source code lives. For example, if the httplib2-0.6.0 project was extracted to /home/jesstess/Desktop/httplib2-0.6.0:

cd /home/jesstess/Desktop/httplib2-0.6.0

will change you into that directory, and:

ls

will show you the source code files in that directory. One of the files is “setup.py”, which has a ”.py” extension indicating that it is a Python script. Type:

sudo python setup.py install

type in your password, and hit enter to install httplib2.

Navigate to the 3 other dependency directories and run:

sudo python setup.py install

in all of them to install those dependencies as well.
If you get an error like:

ImportError: No module named setuptools

you need an extra package. Type:

sudo apt-get install python-setuptools

Download the Twitter project

We’ve written some skeleton code for the Twitter project already. Download this code so you’re ready to start working with it tomorrow:

	Right click the following file, click “Save Target as...” or “Save link as...”, and save it to your Desktop directory: Twitter.tar.gz

	Find Twitter.tar.gz on your Desktop and double-click on it to “extract” it. That will create a folder called Twitter containing several files.

Test the Twitter code

Start a command prompt and navigate to the Desktop/Twitter directory where the Twitter code lives. For example, if the Twitter project is at /home/jesstess/Desktop/Twitter:

cd /home/jesstess/Desktop/Twitter

will change you into that directory, and:

ls

will show you the source code files in that directory. One of the files is “twitter_api.py”, which has a ”.py” extension indicating that it is a Python script. Type:

python twitter_api.py --search=python

at the command prompt to execute the twitter_api.py Python script. You should see the text from 20 tweets containing the word “Python” printed to the screen. If you don’t, let a staff member know.

Success!

You’ve completed setup for the Twitter project.

State Capitals

We’ll look at an example Python script that quizzes you on state capitals during the lecture on Saturday.

Right click the following file, click “Save Target as...” or “Save link as...”, and save it to your Desktop directory: state_capitals.py

Success!

You are done installing dependencies for the Saturday projects.

 Copyright 2012, Python KC.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	Beginners Python Workshop 1.0 documentation

Index

 Copyright 2012, Python KC.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 _static/images/wordplay.png

_static/minus.png

day_one/using_codingbat.html

 Navigation

 		
 index

 		Beginners Python Workshop 1.0 documentation »

Using Codingbat.com

CodingBat is a little different from using Python at the command line or in a text editor like we’ve been doing. When you use CodingBat, you type your code into a web page and click ‘Go’ when you want that code to run. You’ll still need to make sure you indent all your code to the same level.

For each CodingBat question, you will write a function. CodingBat will run your function with a few different inputs, and will compare the output of the function you wrote to what it knows is the correct answer. If all the outputs are correct for all the inputs, you’ve written the function correctly!

We like CodingBat because it gives you immediate feedback on how close your function is to being correct.

Let’s walk through an example, the sumTwoNumbers exercise.
If you visit that exercise web page, this is what you’ll see:

[image: ../_images/cbat_openingscreen.png]
This screen:

		describes the problem (write a function to add any two numbers together)

		shows you some of the inputs that CodingBat will use to test the function you’ve written, and the outputs that CodingBat expects to see returned from your function for each input.

		The inputs are the values in the parentheses, and the expected output is the value pointed to by the arrows:

[image: ../_images/cbat_io.png]
If you simply click “Go” without typing anything in the box, CodingBat gives you an error on the right hand side of the screen:

[image: ../_images/cbat_nocode.png]
Let’s add some code. The function signature (the def sumTwoNumbers(first, second): part) has already been written for you. You’ll write the rest of the function – remember to indent everything inside the function, and remember to return your result instead of printing it!

[image: ../_images/cbat_wrong.png]
Hmm. I’ve got one correct and two wrong. Oh! I see - I typed in first twice, when instead I should have used second:

[image: ../_images/cbat_correct.png]
Great! All the tests are green, so we know that we’ve done this problem correctly and can move on to the next one.

What CodingBat is doing is the same as when you write a function in your text editor or at the Python prompt and then run it a few times, like this:

>>> def sumTwoNumbers(first, second):
... return first + second
...
>>> sumTwoNumbers(2,3)
5
>>> sumTwoNumbers(5,5)
10
>>> sumTwoNumbers(10,-10)
0

Perfect!

Now that you are a CodingBat master, let’s get started.

http://codingbat.com/home/bostonpythonworkshop@gmail.com/Friday

 © Copyright 2012, Python KC.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 		latest

search.html

 Navigation

 		
 index

 		Beginners Python Workshop 1.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2012, Python KC.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 		latest

_static/comment-close.png

_static/up-pressed.png

_static/images/cbat_nocode.png
sumTwoNumbers

sumTwoNumbers(first, second): Given two numbers, add them together and return the results. Compile problems:

sumTwoNumbers(1, 2) — 3
sumTwoNumbers(2, 2) — 4
sumTwoNumbers(10, -10) — 0

see Python Example Code to help with compile problems
Go .Save, Compile, Run

[cof sumtwonumbers (£izst, second):

Error:expected an indented Blook (line 2)

_images/cbat_wrong.png
sumTwoNumbers(first, second): Given two numbers, add them together and return the results.

sumTwoNumbers(1, 2) — 3
sumTwoNumbers(2, 2) — 4
sumTwoNumbers(10, -10) — 0

Go .Save, Compile, Run

dof sumtwonumbers (£izst, second)
return first + first

Expected [This Run]

[sumTwoNumbers(1, 2) =3 |2 |
[sumTwoNumbers(2, 2) — 4 |4 |
[sumTwoNumbers(10, -10) — 0|20 |

Progress Graph for this problem new

_static/down.png

_static/comment.png

_images/wordplay.png

_images/twitter.png

_static/images/colorwall.png

_static/ajax-loader.gif

_static/file.png

day_one/tutorial.html

 Navigation

 		
 index

 		Beginners Python Workshop 1.0 documentation »

Tutorial

Welcome to the Friday tutorial!

This tutorial covers several core programming concepts that we’ll build upon during an interactive lecture tomorrow morning. It will take 1-2 hours to complete. There’s a break in the middle, and exercises at the middle and end to help review the material.

This is an interactive tutorial! As you go through this tutorial, any time you see something that looks like this:

a = "Hello"

you should type the expression at a Python prompt, hitting Return after every line and noting the output.

No copying and pasting! You’ll learn the concepts better if you type them out yourself.

Math

Math in Python looks a lot like math you type into a calculator. A Python prompt makes a great calculator if you need to crunch some numbers and don’t have a good calculator handy

Addition

2 + 2
1.5 + 2.25

Subtraction

4 - 2
100 - .5
0 - 2

Multiplication

2 * 3

Division

4 / 2
1 / 2

Hey now! That last result is probably not what you expected. What’s going on here is that integer divison produces an integer. You need a number that knows about the decimal point to get a decimal out of division:

1.0 / 2

This means you have to be careful when manipulating fractions. If you were doing some baking and needed to add 3/4 of a cup of flour and 1/4 of a cup of flour, we know in our heads that 3/4 + 1/4 = 1 cup. But try that at the Python prompt:

3/4 + 1/4

What do you need to do to get the right answer? Use data types that understand decimals for each of the divisions:

3.0/4 + 1.0/4
3.0/4.0 + 1.0/4.0

The two previous expressions produce the same result. You only need to make one of the numbers in each fraction have a decimal. When the Python interpreter goes to do the division, it notices that one of the numbers in the fraction cares about decimals and says “that means I have to make the other number care about decimals too”.

Types

There’s a helpful function (more on what a function is in a second) called type that tells you what kind of thing – what data type – Python thinks something is. We can check for ourselves that Python considers ‘1’ and ‘1.0’ to be different data types:

type(1)
type(1.0)

So now we’ve seen two data types: integers and floats.

I used the term ‘function’ without explaining what it is – we’ll talk about functions more in a bit, and write our own, but for now know these things:

		Functions encapsulate some useful bit of work. We save that useful bit of work inside the function so we don’t have to type it over and over again every time we want to use it. So, for example, some nice person decided that being able to determine the type of an object was useful, so he or she put the Python code that figures out an object’s type into the function type, and now we all get to use it, instead of having to write it ourselves.

		Functions are sort of like functions in math class. You provide input to a function and it produces output. The type function takes data as an input, and produces what type of data the data is (e.g. an integer or a float) as output.

		To use a function, write the name of the function followed by an open parenthesis, what the function takes as input (we call that input the arguments to the function), and then a close parenthesis.

So in this case ‘type’ is the name of the function, and it takes one argument; in the example we first give type an argument of 1 and then give it an argument of 1.0.

Command History

Stop here and try hitting the Up arrow on your keyboard a few times. The Python interpreter saves a history of what you’ve entered, so you can arrow up to old commands and hit Return to re-run them!

Variables

A lot of work gets done in Python using variables. Variables are a lot like the variables in math class, except that in Python variables can be of any data type, not just numbers.

type(4)
x = 4
x
type(x)
2 * x

Giving a name to something, so that you can refer to it by that name, is called assignment. Above, we assigned the name ‘x’ to 4, and after that we can use x wherever we want to use the number 4.
Variables can’t have spaces or other special characters, and they need to start with a letter. Here are some valid variable names:

magic_number = 1500
amountOfFlour = .75
my_name = "Jessica"

Projects develop naming conventions: maybe multi-word variable names use underscores (like magic_number), or “camel case” (like amountOfFlour). The most important thing is to be consistent within a project, because it makes the code more readable.

Output

Notice how if you type a 4 and hit enter, the Python interpreter spits a 4 back out:

4

But if you assign 4 to a variable, nothing is printed:

x = 4

You can think of it as that something needs to get the output. Without an assignment, the winner is the screen. With assignment, the output goes to the variable.
You can reassign variables if you want:

x = 4
x
x = 5
x

Sometimes reassigning a variable is an accident and causes bugs in programs:

x = 3
y = 4
x * y
x * x
2 * x - 1 * y

Order of operations works pretty much like how you learned in school. If you’re unsure of an ordering, you can add parentheses like on a calculator:

(2 * x) - (1 * y)

Note that the spacing doesn’t matter:

x = 4

and:

x=4

are both valid Python and mean the same thing:

(2 * x) - (1 * y)

and:

(2*x)-(1*y)

are also both valid and mean the same thing. You should strive to be consistent with whatever spacing you like or a job requires, since it makes reading the code easier.

You aren’t cheating and skipping typing these exercises out, are you? Good! :)

Strings

So far we’ve seen two data types: integers and floats. Another useful data type is a string, which is just what Python calls a bunch of characters (like numbers, letters, whitespace, and punctuation) put together. Strings are indicated by being surrounded by quotes:

"Hello"
"Python, I'm your #1 fan!"

Like with the math data types above, we can use the type function to check the type of strings:

type("Hello")
type(1)
type("1")

String Concatenation

You can smoosh strings together (called “concatenation”) using the ‘+’ sign:

"Hello" + "World"
name = "Jessica"
print "Hello " + name

Printing

You can print strings using print:

h = "Hello"
w = "World"
print h + w
my_string = "Alpha " + "Beta " + "Gamma " + "Delta"
print my_string

How about printing different data types together?

print "Hello" + 1

Hey now! The output from the previous example was really different and interesting; let’s break down exactly what happened:

>>> print "Hello" + 1
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: cannot concatenate 'str' and 'int' objects

Python is giving us a traceback. A traceback is details on what was happening when Python encountered an Exception or Error – something it doesn’t know how to handle.

There are many kinds of Python errors, with descriptive names to help us humans understand what went wrong. In this case we are getting a TypeError: we tried to do some operation on a data type that isn’t supported for that data type.

Python gives us a helpful error message as part of the TypeError:

“cannot concatenate ‘str’ and ‘int’ objects”

We saw above the we can concatenate strings:

print "Hello" + "World"

works just fine.

However,

print "Hello" + 1

produces a TypeError. We are telling Python to concatenate a string and an integer, and that’s not something Python understands how to do.

We can convert an integer into a string ourselves, using the str function:

print "Hello" + str(1)

Like the type function from before, the str function takes 1 argument. In the above example it took the integer 1. str takes a Python object as input and produces a string version of that input as output.

String length

There’s another useful function that works on strings called len. len returns the length of a string as an integer:

print len("Hello")
print len("")
fish = "humuhumunukunukuapuaʻa"
length = str(len(fish))
print fish + " is a Hawaiian fish whose name is " + length + " characters long."

Quotes

We’ve been using double quotes around our strings, but you can use either double or single quotes:

print 'Hello'
print "Hello"

Like with spacing above, use whichever quotes make the most sense for you, but be consistent.

You do have to be careful about using quotes inside of strings:

print 'I'm a happy camper'

This gives us another traceback, for a new kind of error, a SyntaxError. When Python looks at that expression, it sees the string ‘I’ and then

m a happy camper’

which it doesn’t understand – it’s not ‘valid’ Python. Those letters aren’t variables (we haven’t assigned them to anything), and that trailing quote isn’t balanced. So it raises a SyntaxError.

We can use double quotes to avoid this problem:

print "I'm a happy camper"

or we can escape the quote with a backslash:

print 'I\'m a happy camper'
print 'Ada Lovelace is often called the world\'s first programmer.'
print "Computer scientist Grace Hopper popularized the term \"debugging\"."

One fun thing about strings in Python is that you can multiply them:

print "A" * 40
print "ABC" * 12
h = "Happy"
b = "Birthday"
print (h + b) * 10

Part 1 Practice

Read the following expressions, but don’t execute them. Guess what the output will be. After you’ve made a guess, copy and paste the expressions at a Python prompt and check your guess.

1:

total = 1.5 - 1/2 + ((-2.0/2) - (1.0/2))
print total
type(total)

2:

a = "quick"
b = "brown"
c = "fox jumps over the lazy dog"
print "The " + a * 3 + " " + b * 3 + " " + c

3:

print 2.0 * 123 + str(2.0) * 123

4:

(Remember, copying and pasting is fine here in this practice section -- we'll go back to typing out the code for part 2)

a = "| (_| -()- -()- -()- -()- | -()- -()- -()- -()- ||\n"
b = "|__|_/___|__|__|__|___|__|___|__|___________________________||\n"
c = "|________________________________|__|__()_|__()_|__()__|_____||\n"
d = " ___|)___\n"
e = "|_/(|,____/_|___/_|____/_|______|___________________________||\n"
f = "|___/____________________________|___________________________||\n"
g = "| | | () | () | () | | ||\n"
h = "|_____|.________________________|____|____|____|___|_____||\n"
i = "|__/|_______/|____/|_____/|______|___________________________||\n"
j = "|_____/__________________________|____\|____\|____\|_________||\n"
k = "|____/___________________________|___________________________||\n"
l = "|__/____._______________________|__|__|__|__|__|__|___|_____||\n"

print d + f + i + e + b + g + a + c + l + h + j + k

End of Part 1

Congratulations! You’ve learned about and practiced math, strings, variables, data types, exceptions, tracebacks, and executing Python from the Python prompt.

Take a break, stretch, meet some neighbors, and ask the staff if you have any questions about this material.

Python Scripts

Until now we’ve been executing commands at the Python prompt. This is great for math, short bits of code, and testing. For longer ideas, it’s easier to store the code in a file.

		Download the file nobel.py by right-clicking on it and saying to save it as a ”.py” file to your Desktop. The ”.py” extension hints that this is a Python script.

		Open a command prompt, and use the navigation commands (dir and cd on Windows, ls, pwd, and cd on OS X and Linux) to navigate to your home directory. See navigating from a command prompt for a refresher on those commands.

		Once you are in your home directory, execute the contents of nobel.py by typing:

python nobel.py

at a command prompt.

nobel.py introduces two new concepts: comments and multiline strings.

		Open nobel.py in your text editor (see preparing your text editor for a refresher on starting the editor).

		Read through the file in your text editor carefully and check your understanding of both the comments and the code.

Study the script until you can answer these questions:

		How do you comment code in Python?

		How do you print just a newline?

		How do you print a multi-line string so that whitespace is preserved?

Let’s get back to some interactive examples. Keep typing them out! You’ll thank yourself tomorrow. :)

Booleans

So far, the code we’ve written has been unconditional: no choice is getting made, and the code is always run. Python has another data type called a boolean that is helpful for writing code that makes decisions. There are two booleans: True and False.

True
type(True)
False
type(False)

You can test if Python objects are equal or unequal. The result is a boolean:

0 == 0
0 == 1

Use == to test for equality. Recall that = is used for assignment.

This is an important idea and can be a source of bugs until you get used to it: = is assignment, == is comparison.

Use != to test for inequality:

"a" != "a"
"a" != "A"

<, <=, >, and >= have the same meaning as in math class. The result of these tests is a boolean:

1 > 0
2 >= 3
-1 < 0
.5 <= 1

You can check for containment with the in keyword, which also results in a boolean:

"H" in "Hello"
"X" in "Hello"

Or check for a lack of containment with not in:

"a" not in "abcde"
"Perl" not in "Boston Python Workshop"

Flow Control

if statements

We can use these expressions that evaluate to booleans to make decisions and conditionally execute code:

if 6 > 5:
 print "Six is greater than five!"

That was our first multi-line piece of code, and the way to enter it at a Python prompt is a little different. First, type the if 6 > 5: part, and hit enter. The next line will have ... as a prompt, instead of the usual >>>. This is Python telling us that we are in the middle of a code block, and so long as we indent our code it should be a part of this code block.

Type 4 spaces, and then type print “Six is greater than five!”. Hit enter to end the line, and hit enter again to tell Python you are done with this code block. All together, it will look like this:

>>> if 6 > 5:
... print "Six is greater than five!"
...
Six is greater than five!

So what is going on here? When Python encounters the if keyword, it evaluates the expression following the keyword and before the colon. If that expression is True, Python executes the code in the indented code block under the if line. If that expression is False, Python skips over the code block.

In this case, because 6 really is greater than 5, Python executes the code block under the if statement, and we see “Six is greater than five!” printed to the screen. Guess what will happen with these other expressions, then type them out and see if your guess was correct:

if 0 > 2:
 print "Zero is greater than two!"
if "banana" in "bananarama":
 print "I miss the 80s."

more choices: if and else

You can use the else keyword to execute code only when the if expression isn’t True:

sister_age = 15
brother_age = 12
if sister_age > brother_age:
 print "sister is older"
else:
 print "brother is older"

Like with if, the code block under the else statement must be indented so Python knows that it is a part of the else block.

compound conditionals: and and or

You can check multiple expressions together using the and and or keywords. If two expressions are joined by an and, they both have to be True for the overall expression to be True. If two expressions are joined by an or, as long as at least one is True, the overall expression is True.

Try typing these out and see what you get:

1 > 0 and 1 < 2
1 < 2 and "x" in "abc"
"a" in "hello" or "e" in "hello"
1 <= 0 or "a" not in "abc"

Guess what will happen when you enter these next two examples, and then type them out and see if you are correct. If you have trouble with the indenting, call over a staff member and practice together. It is important to be comfortable with indenting for tomorrow:

temperature = 32
if temperature > 60 and temperature < 75:
 print "It's nice and cozy in here!"
else:
 print "Too extreme for me."
hour = 11
if hour < 7 or hour > 23:
 print "Go away!"
 print "I'm sleeping!"
else:
 print "Welcome to the cheese shop!"
 print "Can I interest you in some choice gouda?"

You can have as many lines of code as you want in if and else blocks; just make sure to indent them so Python knows they are a part of the block.

even more choices: elif

If you have more than two cases, you can use the elif keyword to check more cases. You can have as many elif cases as you want; Python will go down the code checking each elif until it finds a True condition or reaches the default else block:

sister_age = 15
brother_age = 12
if sister_age > brother_age:
 print "sister is older"
elif sister_age == brother_age:
 print "sister and brother are the same age"
else:
 print "brother is older"

You don’t have to have an else block, if you don’t need it. That just means there isn’t default code to execute when none of the if or elif conditions are True:

color = "orange"
if color == "green" or color == "red":
 print "Christmas color!"
elif color == "black" or color == "orange":
 print "Halloween color!"
elif color == "pink":
 print "Valentine's Day color!"

If color had been “purple”, that code wouldn’t have printed anything.

Remember that ‘=’ is for assignment and ‘==’ is for comparison.

Writing Functions

We talked a bit about functions when we introduced the type() function. Let’s review what we know about functions:

		They do some useful bit of work.

		They let us re-use code without having to type it out each time.

		They take input and possibly produce output (we say they return a value). You can assign a variable to this output.

		You call a function by using its name followed by its arguments in parenthesis.

For example:

length = len("Mississippi")

Executing this code assigns the length of the string “Mississippi” to the variable length.

We can write our own functions to encapsulate bits of useful work so we can reuse them. Here’s how you do it:

**Step 1: write a function signature:

A function signature tells you how the function will be called. It starts with the keyword def, which tells Python that you are defining a function. Then comes a space, the name of your function, an open parenthesis, the comma-separated input parameters for your function, a close parenthesis, and a colon. Here’s what a function signature looks like for a function that takes no arguments:

def myFunction():

Here’s what a function signature looks like for a function that takes one argument called string:

def myFunction(string):

And one for a function that takes two arguments:

def myFunction(myList, myInteger):

Parameters should have names that usefully describe what they are used for in the function.

We’ve used the words parameters and arguments seemingly interchangeably to reference the input to functions. The distinction isn’t really important right now, but if you’re curious: in function signatures the input is called parameters, and when you are calling the function the input is called arguments.

Step 2: do useful work inside the function

Underneath the function signature you do your useful work. Everything inside the function is indented, just like with if/else blocks, so Python knows that it is a part of the function.

You can use the variables passed into the function as parameters, just like you can use variables once you define them outside of functions.

def add(x, y):
 result = x + y

Step 3: return something

If you want to be able to assign a variable to the output of a function, the function has to return that output using the return keyword.

def add(x, y):
 result = x + y
 return result

or, even shorter:

def add(x, y):
 return x + y

You can return any Python object: numbers, strings, booleans ... even other functions!

Once you execute a return, you are done with the function – you don’t get to do any more work. That means if you have a function like this:

def absoluteValue(number):
 if number < 0:
 return number * -1
 return number

if number is less than 0, you return number * -1 and never even get to the last line of the function. However, if number is greater than or equal to 0, the if expression evaluates to False, so we skip the code in the if block and return number.

We could have written the above function like this if we wanted. It’s the same logic, just more typing:

def absoluteValue(number):
 if number < 0:
 return number * -1
 else:
 return number

Step 4: use the function

Once you define a function you can use it as many times as you want:

def add(x, y):
 return x + y

result = add(1234, 5678)
print result
result = add(-1.5, .5)
print result

Functions don’t have to return anything, if you don’t want them to. They usually return something because we usually want to be able to assign variables to their output.

End of Part 2

Congratulations! You’ve learned about and practiced executing Python scripts, booleans, conditionals, and if/else blocks, and you’ve written your own Python functions. This is a huge, huge accomplishment!

Take a break, stretch, meet some neighbors, and ask the staff if you have any questions about this material.

 © Copyright 2012, Python KC.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 		latest

_images/colorwall.png

_static/down-pressed.png

_static/images/twitter.png

_images/cbat_nocode.png
sumTwoNumbers

sumTwoNumbers(first, second): Given two numbers, add them together and return the results. Compile problems:

sumTwoNumbers(1, 2) — 3
sumTwoNumbers(2, 2) — 4
sumTwoNumbers(10, -10) — 0

see Python Example Code to help with compile problems
Go .Save, Compile, Run

[cof sumtwonumbers (£izst, second):

Error:expected an indented Blook (line 2)

_static/images/cbat_io.png
sumTwoNumbers

Inputs
‘sumTwoNumbers(A%nd): Given two numbers, add them toge
—
St 31+~ Output

sumTwoNumbers(10, -10) —

Go ..Save, Compile, Run

_static/comment-bright.png

_images/cbat_io.png
sumTwoNumbers

Inputs
‘sumTwoNumbers(A%nd): Given two numbers, add them toge
—
St 31+~ Output

sumTwoNumbers(10, -10) —

Go ..Save, Compile, Run

_static/images/cbat_correct.png
sumTwoNumbers

sumTwoNumbers(first, second): Given two numbers, add them together and return the results.

Expected [This Run]
[sumTwoNumbers(1,2) 3 |3 [oK]

sumTwoNumbers(1, 2) — 3
sumTwoNumbers(2, 2) = 4 [sumTwoNumbers(2, 2) —4 |4 oK
sumTwoNumbers(10, -10) — 0

emTuanembers(16, 10) oo Jox
5 save, Compile, Run
e All Correct

adamf@csh.rit.edu done page

Progress Graph for this problem new

_static/images/cbat_openingscreen.png
sumTwoNumbers

sumTwoNumbers(first, second): Given two numbers, add them together and return the results.

sumTwoNumbers(1, 2) — 3
sumTwoNumbers(2, 2) — 4
sumTwoNumbers(10, -10) — 0

=

[cof sumtwonumbers (£izst, second):

Save, Compile, Run

_images/cbat_correct.png
sumTwoNumbers

sumTwoNumbers(first, second): Given two numbers, add them together and return the results.

Expected [This Run]
[sumTwoNumbers(1,2) 3 |3 [oK]

sumTwoNumbers(1, 2) — 3
sumTwoNumbers(2, 2) = 4 [sumTwoNumbers(2, 2) —4 |4 oK
sumTwoNumbers(10, -10) — 0

emTuanembers(16, 10) oo Jox
5 save, Compile, Run
e All Correct

adamf@csh.rit.edu done page

Progress Graph for this problem new

_static/up.png

_static/plus.png

_static/images/cbat_wrong.png
sumTwoNumbers(first, second): Given two numbers, add them together and return the results.

sumTwoNumbers(1, 2) — 3
sumTwoNumbers(2, 2) — 4
sumTwoNumbers(10, -10) — 0

Go .Save, Compile, Run

dof sumtwonumbers (£izst, second)
return first + first

Expected [This Run]

[sumTwoNumbers(1, 2) =3 |2 |
[sumTwoNumbers(2, 2) — 4 |4 |
[sumTwoNumbers(10, -10) — 0|20 |

Progress Graph for this problem new

_images/cbat_openingscreen.png
sumTwoNumbers

sumTwoNumbers(first, second): Given two numbers, add them together and return the results.

sumTwoNumbers(1, 2) — 3
sumTwoNumbers(2, 2) — 4
sumTwoNumbers(10, -10) — 0

=

[cof sumtwonumbers (£izst, second):

Save, Compile, Run

